
11/7/18, 11'25 PM

Page 1 of 4https://submissions.mirasmart.com/ISMRM2019/ViewSubmissionPublic.aspx?sei=Skkqt2Q9i

MicroQIT - A Computational Framework for Population Microstructure Imaging
Ryan P Cabeen  and Arthur W Toga

Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, United States

Synopsis
Microstructure imaging provides a quantitative tool for characterizing neural tissue with diffusion MRI and expanding our understanding of how
the brain changes in health and disease. However, robust computational tools are needed for population imaging studies, so we developed a
computational framework (MicroQIT) using the Quantitative Imaging Toolkit to meet this need by providing regional summaries and spatially
normalized microstructure parameter maps. It supports a variety of ways to extract microstructure information from multi-shell diffusion MRI,
leverages grid computing environments, and is available for use by the research community for future studies.

Introduction
Microstructure imaging constitutes a wide variety of techniques for estimating quantitative parameters that describe brain tissue using diffusion MRI .
These techniques can expand our understanding of how the brain changes in health and disease; however, robust computational tools are needed for
conducting microstructure imaging studies and evaluating the efficacy of microstructure models . While a variety of software packages exist for estimating
microstructure parameters from individual scans  there remains a need for integrated workflows for processing large datasets from population imaging
studies. To address this challenge, we developed a computational framework (MicroQIT) using the Quantitative Imaging Toolkit  and provide it for use by
the research community. We describe the design of the framework, present results from evaluative studies of its reliability and sensitivity to age
associations in neurodevelopment, and discuss its capabilities and prospects.

Design
The primary design goal of MicroQIT is to automate the microstructure imaging studies that involve large populations. It can be used from the command
line or from the LONI Pipeline  to take diffusion-weighted MRIs as input and produce spatially normalized microstructure parameter maps and statistical
summaries from region-based analysis. A variety of parameters are included, such as diffusion tensor imaging with and without free water elimination (DTI,
fwDTI) , neurite orientation dispersion and density imaging (NODDI) , white matter tract integrity (WMTI) , and multi-compartment microscopic diffusion
imaging (MCSMT) .

MicroQIT uses a template-based approach to spatially normalize data and statistically aggregate parameters through ROI analysis . To provide accurate

alignment within white matter , it uses the tensor-based registration algorithm provided by DTI-TK . We created population averaged
diffusion tensor image based on the IIT template  for coregistration and added ROIs from the
Johns Hopkins University (JHU) and Desikan-Killiany (DK) white matter atlases. The JHU ROIs were
aligned using FSL fnirt , and the DK ROIs were found by averaging Freesurfer segmentations
in the HCP subjects.

MicroQIT is implemented using GNU Make. Make provides a declarative interface for choosing
which type of analysis to conduct, and it facilitates parallel computing and data reuse. Unlike
previous neuroimaging applications using Make , we extend it to include data provenance
regarding the workflow, commands, and compute environment in each run. We also include
extensions to support grid computing, which enables parallel processing of subjects when a
cluster is available and parallel model fitting when a particularly expensive optimization is
needed.

Evaluation
We evaluated our framework with two experiments with the following typically used microstructure parameters: DTI fractional anisotropy (FA), DTI mean
diffusivity (MD), fwDTI FA, fwDTI MD, NODDI neurite density index (NDI), NODDI orientation dispersion index (ODI), MCSMT neurite density, and WMTI
axonal water fraction (AWF). First we conducted a scan-rescan analysis to assess reproducibility. We used 44 pairs of test-retest in vivo human scans with
1.25 mm isotropic voxels and b=0,1000,2000,3000 s/mm  from the Human Connectome Project (HCP) . We measured the coefficient of variation (CV)
and intra-class correlation (ICC) of each ROI in several commonly used microstructure parameters. Figure 1 shows excellent reliability with mean CV <
2.5% and ICC > 0.85 cross all metrics. Second, we investigated the relative sensitivity of these parameters to age-associated changes in white matter
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neurodevelopment. We used 133 in vivo scans with 2.0 mm isotropic voxels and b=0,1000,3000 s/mm  from the CMIND dataset. We fit cubic polynomials
to the ROI averaged parameters and compare the results from the region with the highest R . Figure 2 shows the relative sensitivity of the parameters,
where the highest performing methods achieved an R  > 0.8.

Discussion and Conclusions
MicroQIT provides a robust computational framework for analyzing microstructure parameters across a large population. The results of our evaluation
demonstrates high reliability provided in a variety of parameters and high sensitivity to typical changes in white matter through neurodevelopment. The
design of MicroQIT can be easily extended to use new microstructure models that can be useful for population studies, and the present implementation
may help to understand the changes in the brain in future studies. MicroQIT is available for download online .

Acknowledgements
This work was supported by NIH grant P41EB015922.

References
[1] Ferizi, U., Schneider, T., Panagiotaki, E., Nedjati‐Gilani, G., Zhang, H., Wheeler‐Kingshott, C. A., & Alexander, D. C. (2014). A ranking of diffusion MRI
compartment models with in vivo human brain data. Magnetic resonance in medicine, 72(6), 1785-1792.

[2] Alexander, D. C., Dyrby, T. B., Nilsson, M., & Zhang, H. (2017). Imaging brain microstructure with diffusion MRI: practicality and applications. NMR in
Biomedicine, e3841.

[3] Fick, R., Wassermann, D., & Deriche, R. (2018, June). Mipy: An Open-Source Framework to improve reproducibility in Brain Microstructure Imaging. In
OHBM 2018-Human Brain Mapping (pp. 1-4).

[4] Alimi, A., Fick, R., Wassermann, D., & Deriche, R. (2018, September). Dmipy, a Diffusion Microstructure Imaging toolbox in Python to improve research
reproducibility. In Computational Diffusion MRI 2018.

[5] Cabeen, R. P., Laidlaw, D. H., Toga, A. W., (2018). Quantitative Imaging Toolkit: Software for Interactive 3D Visualization, Processing, and Analysis
ofNeuroimaging Datasets. ISMRM 2018, Abstract 2854

[6] Dinov, I., Van Horn, J., Lozev, K., Magsipoc, R., Petrosyan, P., Liu, Z., ... & Toga, A. W. (2009). Efficient, distributed and interactive neuroimaging data
analysis using the LONI pipeline. Frontiers in neuroinformatics, 3, 22.

[7] Hoy, A. R., Koay, C. G., Kecskemeti, S. R., & Alexander, A. L. (2014). Optimization of a free water elimination two-compartment model for diffusion
tensor imaging. NeuroImage, 103, 323-333.

[8] Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI: practical in vivo neurite orientation dispersion and density
imaging of the human brain. Neuroimage, 61(4), 1000-1016.

[9] Fieremans, E., Benitez, A., Jensen, J. H., Falangola, M. F., Tabesh, A., Deardorff, R. L., ... & Helpern, J. A. (2013). Novel white matter tract integrity
metrics sensitive to Alzheimer disease progression. American Journal of Neuroradiology.

[10] Kaden, E., Kelm, N. D., Carson, R. P., Does, M. D., & Alexander, D. C. (2016). Multi-compartment microscopic diffusion imaging. NeuroImage, 139,
346- 359.

[11] Cabeen, R. P., Bastin, M. E., & Laidlaw, D. H. (2017). A Comparative evaluation of voxel-based spatial mapping in diffusion tensor imaging.
Neuroimage, 146, 100-112.

[12] Wang, Y., Gupta, A., Liu, Z., Zhang, H., Escolar, M. L., Gilmore, J. H., ... & Styner, M. (2011). DTI registration in atlas based fiber analysis of infantile
Krabbe disease. Neuroimage, 55(4), 1577-1586.

[13] Zhang, H., Yushkevich, P. A., Alexander, D. C., & Gee, J. C. (2006). Deformable registration of diffusion tensor MR images with explicit orientation
optimization. Medical image analysis, 10(5), 764-785.

[14] Zhang, S., Peng, H., Dawe, R. J., & Arfanakis, K. (2011). Enhanced ICBM diffusion tensor template of the human brain. Neuroimage, 54(2), 974-984.

[15] Zhang, S., & Arfanakis, K. (2018). Evaluation of standardized and study-specific diffusion tensor imaging templates of the adult human brain: Template
characteristics, spatial normalization accuracy, and detection of small inter-group FA differences. NeuroImage, 172, 40-50.

[16] Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). Fsl. Neuroimage, 62(2), 782-790.

[17] Fischl, B. (2012). FreeSurfer. Neuroimage, 62(2), 774-781.

2
2

2

20,21



11/7/18, 11'25 PM

Page 3 of 4https://submissions.mirasmart.com/ISMRM2019/ViewSubmissionPublic.aspx?sei=Skkqt2Q9i

[18] Askren, M. K., McAllister-Day, T. K., Koh, N., Mestre, Z., Dines, J. N., Korman, B. A., ... & Rane, S. D. (2016). Using make for reproducible and parallel
neuroimaging workflow and quality-assurance. Frontiers in neuroinformatics, 10, 2.

[19] Sotiropoulos, S. N., Jbabdi, S., Xu, J., Andersson, J. L., Moeller, S., Auerbach, E. J., ... & Feinberg, D. A. (2013). Advances in diffusion MRI acquisition
and processing in the Human Connectome Project. Neuroimage, 80, 125-143.

[20] http://cabeen.io/
[21] http://resource.loni.usc.edu/resources/downloads/

Figures

A visualization of features supported by MicroQIT. The top row shows regions-of-interest from the Johns Hopkins and Desikan-Killiany white matter
atlases, which can be used in MicroQIT to summarize microstructure parameters. The middle and bottom rows show a sampling of microstructure
parameters that are provided. 88 scans from the Human Connectome Project were averaged to produce the parameter maps.

Results from evaluating the scan-rescan reliability of MicroQIT. The top panel shows the coefficient of variation (smaller is better) and the bottom panel
shows the intra-class correlation (bigger is better). Each point represents the average reliability of a given region-of-interest. The results show high
reliability across all parameters.
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Results from evaluating an application to age-associated changes in typical white matter neurodevelopment. The plots show metrics in left superior
temporal white matter, and each point represents an individual subject. The results demonstrate high sensitivity (R  > 0.8) of cubic polynomial modeling
with age.
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