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ABSTRACT

Epilepsy is a debilitating neurological disorder that di-
rectly impacts millions of people and exerts a tremendous
economic burden on society at large. While traumatic
brain injury (TBI) is a common cause, there remain many
open questions regarding its pathological mechanism. The
goal of the Epilepsy Bioinformatics Study for Antiepilep-
togenic Therapy (EpiBioS4Rx) is to identify epileptogenic
biomarkers through a comprehensive project spanning multi-
ple species, modalities, and research institutions; in particu-
lar, diffusion magnetic resonance imaging (MRI) is a critical
component, as it probes tissue microstructure and structural
connectivity. The project includes in vivo imaging of a rodent
fluid-percussion model of TBI, and we developed a com-
putational diffusion MRI framework for EpiBioS4Rx which
employs advanced techniques for preprocessing, modeling,
spatial normalization, region analysis, and tractography to
derive imaging metrics at group and individual levels. We
describe the system’s design, present characteristic results
from a longitudinal cohort, and discuss its role in biomarker
discovery and further studies.

Index Terms— diffusion MRI, traumatic brain injury,
epilepsy, tractography, neuroinformatics

1. INTRODUCTION

Epilepsy is a debilitating neurological disorder that directly
impacts millions of lives and exerts a tremendous economic
burden on society at large [1]. While traumatic brain injury
(TBI) is a common cause, post-traumatic epilepsy (PTE)
cases are often heterogeneous and symptoms may appear
years after the primary insult, [2], making it difficult to study

This research was supported by the National Institute of Neurological
Disorders and Stroke (NINDS) of the National Institutes of Health (NIH)
under Award Numbers U54NS100064 (EpiBioS4Rx), NIH P41-EB015922,
and NIH U54-EB020406.

the pathomechanisms of the disease and to identify acute
biomarkers. Despite this, the discovery and use of non-
invasive imaging biomarkers of TBI and PTE pathology are
technically feasible because imaging is routinely acquired in
acute patient care settings. The goal of the Epilepsy Bioinfor-
matics Study for Antiepileptogenic Therapy (EpiBioS4Rx)
is to identify such epileptogenic biomarkers through a com-
prehensive project spanning multiple species, modalities, and
research institutions [3] [4], and in this paper, we focus on
the diffusion MRI component used in the rodent TBI model.

Diffusion magnetic resonance imaging (MRI) is a well
established tool for probing brain tissue microstructure and
structural connectivity [5] that has been widely adopted in
TBI studies [6]. In recent years, diffusion tensor imaging
(DTI) has enabled the detection of structural plasticity follow-
ing injury [7] and the evaluation of diffuse axonal injury [8]
[9]. However, conclusive DTI findings related to disease pro-
gression and subsequent outcome remain open due to some
inconsistent findings [10].

Advanced diffusion MRI modeling techniques have been
used to go beyond DTI analysis, including track-density and
track-weighted imaging [11], apparent fiber density imaging
[11], multi-compartment imaging [12], and spherical decon-
volution tractography [11]. These advanced approaches pro-
vide potentially greater specifity in their parameter maps, and
they can better resolve crossing fibers and other partial vol-
ume effects, paving the way for accurate and reproducible
quantification of white matter architecture in induced models
of TBI. Another way to better understand the tissue changes
that underlie diffusion effects is to compare imaging data with
histology. For example, ex-vivo studies of white matter have
found imaging correlates of axonal loss and iron accumula-
tion in key white matter tracks – the corpus callosum, an-
gular bundle, and internal capsule – six months after lateral
fluid percussion injury [7], and gray matter tissue correlates
of diffusion changes have been found in the hippocampal den-
tate gyrus up to 79 days post injury following induced status



epilepticus. [13] [14]
The approach we report here combines both standard

and more advanced approaches to develop a computational
diffusion MRI framework for biomarker discovery in the ro-
dent model of post-traumatic epilepsy (PTE) in EpiBioS4Rx.
Our framework includes components for quality assessment,
artifact correction, multi-compartment modeling, tensor-
based spatial normalization, region-analysis, and tractog-
raphy. These elements are assembled to derive group-level
representations of anatomy in aggregate form, as well as
individual-level measures to enable fine-grained analysis. We
describe the system’s design, present characteristic results
from a longitudinal cohort, and discuss its role in biomarker
discovery and further studies.

2. METHODS

The overall goal of our framework is to provide an automated
and reproducible pipeline for obtaining imaging metrics for
biomarker discovery. To accomplish this, we implemented a
workflow that includes stages for preprocessing to produce
robust diffusion parameter maps, and subsequently, to pro-
duce data representations at group and individual levels. The
motivation for making this distinction is that the group level
data may inform population level changes, for example to find
what is consistent at a given timepoint after injury; in contrast,
individual level data can provide the specificity necessary for
deriving biomarkers, as they may depend closely on a specific
configuration of anatomical parameters, and they are neces-
sary for eventual translation to personalized medicine solu-
tions for clinical care. We used several software packages,
including FSL [15], QIT [16]1, DTI-TK [17], and the LONI
Pipeline [18] in our workflow, which is illustrated in Fig. 1
and described as follows.

2.1. Preprocessing

Our preprocessing stage included steps for quality control and
enhancement using QIT, as well as diffusion model fitting us-
ing FSL. We first convert Bruker data to NIfTI using Bru2Nii
2 and harmonize subject identifiers and volume filenames
[19]. We perform quality control by visually inspecting
mosaic image plots, by estimating the global noise character-
istics, and by inspecting boxplots depicting the entire cohort
to detect outliers. We perform artifact correction by first
normalizing the signal to have a mean baseline intensity of
one, applying non-local means filtering to reduce noise, and
then performing intra-subject linear registration to reduce
motion artifact. We performed skull stripping by applying
FSL BET to the average baseline scan. Lastly, we estimate
diffusion tensors using FSL DTIFIT and multi-tensor models
(ball-and-sticks) using FSL BEDPOSTX [20].

1http://cabeen.io/qitwiki
2https://github.com/neurolabusc/Bru2Nii

2.2. Group-level Analysis

Our group-level analysis uses a deformable template-based
approach to obtain population averaged data for comparison
across timepoints and for a point of reference in later anal-
yses. We used the tensor-based diffeomorphic registration
algorithm in DTI-TK to create a population averaged DTI
dataset. We also created population averaged multi-tensor
data using a model-based kernel regression framework for
fiber orientation mixtures [21]. This allowed us to inspect
population averaged maps of DTI parameters such as frac-
tional anisotropy (FA), mean diffusivity (MD), axial diffusiv-
ity (AD), and radial diffusivity (RD), as well as the fiber ori-
entations and volume fractions of the multi-tensor model. We
further can delineate population-averaged white matter fiber
bundles using streamline tractography of the average multi-
tensor data.

2.3. Individual-level Analysis

Our individual-level analysis included three approaches: z-
score mapping, region-based analysis, and tractography mod-
eling. For z-score analysis, we aimed to locally measure how
each TBI case differed from sham cases in a statistical sense;
for this, we computed mean and standard deviation maps for
sham cases, and measured the absolute z-score from each TBI
case. For region-analysis, we aimed to quantify microstruc-
ture properties of gray matter areas, for which, we deformed
a gray matter template to our study template, and then sum-
marized the average FA, MD, AD, and RD in each region
[22]. For tractography analysis, we used a bundle-specific
approach. First, a prototypical example of each bundle was
extracted from the average multi-tensor sham data using man-
ually guided seeding, inclusion, and exclusion [21]. For each
bundle, we then computed tract orientation maps (TOM) and
inclusion masks for the bundle starting and ending points.
These were deformed to native space of each scan, and we
selected only the closest compartment to the TOM from the
subject multi-tensor data and performed streamline tractogra-
phy with the deformed inclusion mask. We summarized the
bundles with mean FA, MD, RD, AD, and total volume.

3. EXPERIMENTS

3.1. Datasets

EpiBioS4Rx includes data collected across multiple research
centers and species, and here we present characteristic results
of our framework using rodent imaging data collected with
ethics approval at the University of Eastern Finland in Kuopio
[19]. Adult, male Sprague-Dawley rats were scanned longitu-
dinally at two days, nine days, 30 days, and five months post-
injury with left lateral fluid percussion experimental model
of TBI and with a sham injury. A total of 204 scans were
included in the analysis. Diffusion MRI data were acquired



C) Template Construction – DTI and Multi-tensor Averages

A) Preprocessing – QC 
and Artifact Removal
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D) Anatomical Modeling –
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B) Diffusion Modeling – DTI and Multi-tensor Fitting

Fig. 1. An illustration of our computational diffusion MRI framework, which includes steps for preprocessing (A), diffusion
modeling (B), spatial normalization (C), and anatomical modeling (D), which is done at group and individual levels.

A) Group-level Fiber Results in Subcortical Gray Matter
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B) Group-level Tractography Results in White Matter
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Fig. 2. Shown on the left are group level results comparing sham and TBI cases, including gray matter (A) and white matter
(B). Shown on the right are individual level results, including voxelwise z-scores (C) and variation across timepoints (D).



using a Bruker BioSpin MRI GmbH with a dtiEpiT SpinEcho
sequence [4] and included four b-zero scans and 42 diffusion-
weighted scans with a b-value of 3000 s/mm2.

3.2. Experiments

Our experiments applied the framework described above to
characterize the cohort. We investigated group-level differ-
ences between average multi-tensor data from the sham and
two day post-TBI rodents as follows: first, we examined
voxel-wise multi-tensors models in the gray matter of the
hippocampus and thalamus, and we performed population
averaged tractography of the corpus callosum and cingulum
bundle. We investigated individual level effects by comput-
ing z-score maps of each TBI case and plotting data to assess
changes in white matter across TBI timepoints. We also
created 2D t-Distributed Stochastic Neighbour Embedding
(t-SNE) plots of the gray matter regional metrics, which were
labeled according to TBI after embedding.

3.3. Results

Our results are shown in Fig. 2. Our group-level tests in gray
matter showed loss of fiber populations in subregions of hip-
pocampus and thalamus, ipsilateral to the injury (Fig. 2A).
Our group-level tractography analysis showed ipsilateral dis-
ruptions in the hippocampus portion of the cingulum bundle
and corpus callosum (Fig. 2B). The corpus callosum also
showed changed in contralateral connectivity somewhat an-
terior to the frontal level of the injury site. Our individual-
level analysis demonstrated the ability to detect fine-grained
tissue abnormalities using z-score mapping (Fig. 2C). It also
showed that analysis of white matter pathwas enables the de-
tection of distinct responses to injury, for example the cingu-
lum showed recovery of baseline FA, while the fimbria path-
way showed progressive decline (Fig. 2D, left). The em-
bedding plots showed that gray matter metrics can be used to
derive a low-dimensional summary of differences among TBI
timepoints in an unsupervised manner.

4. DISCUSSION AND CONCLUSIONS

We have presented a diffusion MRI framework designed for
characterizing rodent brain structure after experimental trau-
matic brain injury, and our results demonstrate a variety of
potential routes for biomarker discovery for post-traumatic
epilepsy. Our multi-tensor approach was important for de-
tecting gray matter changes, which were evident in crossing
fiber regions; furthermore, our population-averaged tractog-
raphy approach showed the framework’s potential for directly
visualizing structural changes following TBI. In contrast, our
individual analysis was able to characterize anatomically spe-
cific differences among cases using z-score mapping, region-
based analysis, and bundle-specfic modeling. These may help

build multivariate approaches to biomarker discovery, and our
t-SNE results show that they can depict anatomical changes
following injury with a low-dimensional representation.

Regarding possible limitations, our analysis depends in
part on accurate spatial alignment among cases. We chose
tensor-based alignment and created a study-specific template
to help address possible issues with regard to registration
quality. The deformable registration algorithm in DTI-TK
is well-suited to this task, as it uses the principal orienta-
tion of the tensor for alignment, and consequently, it may
be less sensitive to changes in image contrast due to lesions
than other algorithms. A review of the coregistered DTI
data provided some support for this reasoning, as they ex-
hibited good registration quality. Furthermore, we used a
multi-compartment multi-tensor approach with the ball-and-
sticks model; and while many approaches have instead used
spherical deconvolution fiber orientation distribution imag-
ing, the ball-and-sticks model has several advantages in our
study. First, it has been shown to have good performance with
single shell and low b-value data, and second, the inclusion
of a ball compartment can perhaps better account for signal
from factors that may confound tissue properties, such as the
presence of lesions and changes in cerebro-spinal fluid.

Finally, this framework was designed to include advanced
techniques that provide both group-level and individual levels
of analysis. These two views on the data may help guide the
biomarker discovery process, as they can lead EpiBioS4Rx
researchers to form hypotheses in a coarse-to-fine manner,
which can compromise between comprehensively consider-
ing brain areas for the search and considering a feasible sub-
set of potential markers that can be evaluated with the neces-
sarily limited amount of behavioral data at hand. Our exper-
iments focused on data from University of Eastern Finland,
primarily to demonstrate the capabilities of the system; how-
ever, EpiBioS4Rx has already collected similar data across
imaging centers, and our harmonization pipeline enables our
framework to be applied similarly across data collected across
other EpiBioS4Rx sites at UCLA, University of Melbourne,
and Albert Einstein College of Medicine. Beyond the present
study, our framework may be more broadly extended to other
preclinical rodent imaging studies for discovering biomarkers
or evaluating therapeutic interventions.
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