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ABSTRACT

We develop and evaluate a novel hybrid tractography al-
gorithm for improved segmentation of complex fiber bundles
from diffusion magnetic resonance imaging datasets. We
propose an approach inspired by reinforcement learning that
combines the strengths of both probabilistic and determin-
istic tractography to better resolve pathways dominated by
crossing fibers. Given a fiber bundle query, our approach first
explores an array of possible pathways probabilistically, and
then exploits this information with streamline tractography
using globally optimal fiber compartment assignment in a
conditional random field. We quantitatively evaluated our
approach in comparison with deterministic and probabilistic
approaches using a realistic phantom with Tractometer and
88 test-retest scans from the Human Connectome Project.
We found that the proposed hybrid method offers improved
accuracy with phantom data and more biologically plausible
topographic organization and higher reliability with in vivo
data. This demonstrates the benefits of combining tractog-
raphy approaches and indicates opportunities for integrating
reinforcement learning strategies into tractograpy algorithms.

Index Terms— tractography, diffusion MRI, acoustic ra-
diations, reinforcement learning, machine learning

1. INTRODUCTION

Tractography is the only non-invasive method for reconstruct-
ing brain fiber bundle pathways in vivo, which makes it a
valuable scientific tool for neuroscience research and biomed-
ical applications [1]. One of its goals is to produce mathemati-
cal models of fiber bundles from coherent patterns of fiber ori-
entations obtained from diffusion magnetic resonance imag-
ing (dMRI) data; however, this is complicated by the pres-
ence of crossing fibers, partial volume effects, and inherent
ambiguities as an inverse problem [2] [1]. Learning-based ap-
proaches are emerging as a practical solution for segmenting
fiber bundles across subjects [3]; however, classical tractogra-
phy approaches are still essential for generating high fidelity
training data and for analyzing individual and unusual cases,
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e.g. ex-vivo scans, non-human subjects, surgical cases, etc.
Most existing classical solutions can be broadly categorized
as deterministic, probabilistic, or global [1], with each having
distinct performance characteristics with respect to anatomi-
cal accuracy, false positive rate, computational cost, and abil-
ity to find complex connections [4] [5] [2]. As there exist
distinct strengths and weaknesses of modern tractography al-
gorithms [6], there is an opportunity for making better meth-
ods by deriving hybrid algorithms that leverage the relative
advantages of these different approaches.

This paper investigates a novel hybrid tractography al-
gorithm that takes inspiration from reinforcement learning
to improve the reconstruction of fiber bundles dominated by
crossing fibers. We propose a multi-stage approach that uses
a reinforcement learning strategy of exploitation and explo-
ration. For given a fiber bundle query, our algorithm first
explores the array of possible pathways probabilistically, and
then exploits this information with streamline tractography
using globally optimal fiber compartment assignment. We
formulate the compartment assignment problem using a con-
ditional random field guided by prior probabilistic tracking
with a spatial smoothness criteria. We evaluated our proposed
approach using a realistic digital phantom and compared its
performance to existing approaches using Tractometer, and
we also applied the method to the reconstruction of the acous-
tic radiations in a large cohort of high quality in vivo scans
to assess its biological plausibility, robustness to variation in
brain morphometry, and scan-rescan reliability.

2. METHODS

The primary goal of this work is to investigate how proba-
bilistic and deterministic tractography algorithms can be hy-
bridized to improve their performance. Reinforcement learn-
ing offers motivation for pursuing this idea, as we observe that
probabilistic and deterministic tracking map reasonably well
onto the exploration and exploitation stages that drive such
systems. Generally speaking, the exploration stage involves
the gathering of information that may be useful for solving
a given problem, and the exploitation phase makes the best
decision possible with the information at hand. These steps
are typically iterated in one of a variety of schemes, but here,
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Fig. 1. An illustration of the proposed hybrid tractography algorithm showing the input query and image data and stages for
exploitation and exploration. The shown data depict the corticospinal tract from the ISMRM 2015 Tractography Challenge

we consider something akin to an epsilon-first strategy [7], in
which a single pass of exploration and exploitation is taken.

We have developed this plan into a hybrid tractogra-
phy algorithm that bridges probabilistic and deterministic
approaches with a framework for optimal compartment se-
lection. The workflow takes a fiber bundle query, in the form
of typical inclusion and exclusion masks, and makes a sim-
plifying assumption that each voxel contains a single optimal
compartment that represents the given bundle. Our experi-
ments used the multi-fiber ball-and-sticks diffusion model [8]
implemented in FSL; however, an analogous workflow could
be implemented using peak orientations and amplitudes from
fiber orientation distributions. Our methods and experiments
were implemented in the Quantitative Imaging Toolkit (QIT)
[9] 1 2. We denote the set of voxels of the image volume as
V with arbitrary individual voxels p and q, where each voxel
p contains up to K fiber compartments that are parameter-
ized by a fiber orientation vkp and volume fraction fkp . The
number of compartments K is determined during diffusion
model fitting, and the volume fractions are expected to be
positive and have a sum less than or equal to one, to permit
the modeling of free water. A label map L for a given bun-
dle represents the index of the optimal compartment in each
voxel, with Lp ∈ 0, 1, ...,K, with zero indicating no match.
The algorithm is illustrated in Figure 1 and described below.

2.1. Exploration

A primary advantage of probabilistic tractography is its abil-
ity to explore a wide range of possible pathways through its
repeated application [8]. This is unlike deterministic track-
ing, which uses a restricted set of directions for propagat-
ing streamlines that match the nearest principal fiber orien-
tation [10]. On the other hand, probabilistic tracks can also
take a tortuous route in forming connections, creating dis-
organized bundle reconstructions and possibly taking invalid
paths. However, we have observed that the voxel-wise aver-

1http://cabeen.io/qitwiki
2https://resource.loni.usc.edu/resources/downloads

age of orientations of dense probabilistic tracks are far more
organized than the tracks themselves, and thus, they offer an
avenue for tractography refinement. These factors motivated
our use of probabilistic tracking in a first stage of our hy-
bridized pipeline, in which the goal is to explore a wide ar-
ray of possible paths that form the bundle being queried. We
use the following tracking parameters: a large angle thresh-
old of 85 degrees; dense seeding with 10 seeds per voxel; a
minimum volume fraction of 0.075; random sampling of fiber
orientations around peaks directions with a fixed standard de-
viation of 0.15 [3], and track filtering to meet the fiber bundle
query criteria. We finally compute a tract orientation map [3]
to summarize the most likely orientation µp of the probabilis-
tic tracks passing through voxel p and retain it for use as a
prior on the optimal compartment in the exploitation stage,
which is described next.

2.2. Exploitation

The algorithm then aims to exploit the information gained
through probabilistic tracking by first estimating the opti-
mal fiber compartment for each voxel that best represents
the queried bundle and then subsequently reconstructing it
with streamline integration. We frame the compartment as-
signment problem as inference on Bayesian graphical model
with priors based on the probabilistic tract orientation map
and spatial smoothness. Specifically, we build a conditional
random field (CRF) [11] whose minimal energy state (E)
corresponds to the optimal compartment labeling L:

E(L) =
∑
p∈V

Up(Lp) + γ
∑

(p,q)∈N

Vpq(Lp, Lq) (1)

which is the sum of terms for unary (U) and pairwise (V)
potentials. The unary potential gives preference to compart-
ments that match the tract orientation map, Up(k) = 1− |vkp ·
µp|2, and the pairwise potential gives preference to orienta-
tionally aligned compartments, Vpq(a, b) = 1 − |vap · vbq|2.
The pairwise potential is defined over the possible pairs from



6-neighborhoods N, and γ is a hyperparameter controlling the
spatial smoothness. We initialize with the compartments near-
est to µp within the bundle and optimize the CRF with the it-
erated conditional modes algorithm until convergence. Once
the optimal compartments are found, all others are excluded,
and streamline tractography is performed with similar param-
eters as those used in the exploration stage [10], and the final
bundle is obtained by applying the bundle query criteria.

3. EXPERIMENTS AND RESULTS

We evaluated the proposed hybrid tractography algorithm and
compared its performance to typical deterministic and prob-
abilistic approaches using a realistic digital phantom and an
application to modeling the acoustic radiations.

3.1. Evaluation with a realistic phantom

Our first experiment used a realistic digital phantom from the
2015 ISMRM tractography challenge [2]. Briefly, this phan-
tom was created by creating 25 ground truth bundles from in
vivo human dMRI data and then synthesizing a digital dMRI
phantom depicting only these bundles. Our experiments used
distinct inclusion masks for each bundle to represent the cor-
tical and subcortical brain areas connected by each bundle.
We ran deterministic, probabilistic, and the proposed hybrid
tractography using these inclusion masks as bundle query cri-
teria. We controlled the experiment by using identical track-
ing parameters and matching seedpoints, which were precom-
puted with 10 samples per voxel. Tractography was imple-
mented in QIT and the probabilistic and determinisitic con-
ditions matched the analogous parts of the hybrid tractog-
raphy algorithm. We measured performance relative to the
ground truth bundles using the standalone implementation of
Tractometer [12], which provides the following metrics: in-
valid connections (IC), valid connections (VC), no connec-
tions (NC), spatial agreement (F1), and fiber count (FC). Our
results are reported in Table 1.

3.2. Evaluation with the acoustic radiations

We further evaluated our approach through an evaluation of
the reconstruction of the acoustic radiations (AR). The AR
are a component of the auditory pathway that relays infor-
mation from the medial geniculate nucleus to primary audi-
tory cortex on the transverse temporal gyrus. The AR crosses
substantial vertical thalamic and longitudinal pathways that
complicate AR reconstruction, but comparisons with blunt
micro-dissections have shown some promise of probabilis-
tic tractography in AR modeling [13]. However, Maffei et
al. also observed notable issues such as noisy model geome-
try and numerous false positives, which impact the anatomi-
cal plausibility of AR models made with probabilistic track-
ing. Tractography models with topographic regularity are po-

tentially valuable [14], so we chose the AR as test case for
our approach; furthermore, we included an additional evalu-
ation metric to measure topographic regularity as a gauge of
anatomical plausibility. We computed the endpoint correla-
tion (EC), a simple index of bundle coherency, with the fol-
lowing procedure: orient the bundle to have consistent starts
and ends, sample 5000 pairs of tracks, compute the distances
between each pair for both the starts and ends, and finally
compute the Pearson correlation coefficient between corre-
sponding endpoint distances. A high EC would indicate that
the pattern of inter-curve distances at the start of the bundle is
statistically similar to the corresponding ones at the end, thus
preserving some basic level of topographic organization.

Our experiments examined AR reconstruction using data
from the Human Connectome Project (HCP) [15] with ap-
proval from the USC institutional review board. We used an
atlas-based approach to query the AR, with inclusion ROIs
that were manually drawn to match the expected beginning
and end of the left and right AR. To ensure consistent seed-
ing conditions when comparing methods, 10000 seed points
were sampled per bundle in atlas space. We deformed these
inclusion masks and seed points from the group template to
each subject’s native space using DTI-TK [16], and we com-
pared deterministic and probabilistic approaches to the pro-
posed hybrid tractography algorithm using identical tracking
parameters to the previous experiment. We extracted the left
and right AR from 88 scans comprising the test-rest portion
of the HCP data, and we measured the EC and three measures
of scan-rescan reproducibilty. Specifically, we looked at the
coefficient of variation (CV) of the total bundle volumes, and
following intra-subject registration, we measured the voxel-
wise spatial agreement using both the standard and weighted
forms of the Dice coefficient [17]. The resulting AR models
are shown in Figure 2 and are plotted in Figure 3.

Table 1. Tractometer and topographic regularity results com-
paring the performance of the hybrid approach with standard
deterministic and probabilistic approaches, which were run
under identical tracking, seeding, and selection criteria.

Method IC VC NC F1 EC FC

Probab. 17% 83% 0.5% 65% 9% 4977

Determ. 17% 83% 0.5% 65% 10% 5197

Hybrid 13% 86% 0.3% 67% 22% 8574

4. DISCUSSION AND CONCLUSIONS

Our results demonstrate a number of benefits of the proposed
hybrid tractography approach. In particular, the Tractometer
results show a consistent improvement in reconstruction ac-
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Fig. 2. Qualitative comparison of tractography results from modeling the acoustic radiations in HCP.
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Fig. 3. Quantitative tractography results from modeling the acoustic radiations in HCP data, comparing deterministic (Det) and
probabilistic (Prob) tracking with the proposed method (Hybrid) in terms of topography and reproducibility.

curacy across the phantom fiber bundles, as evidenced by in-
creased valid connections and the F1 spatial agreement mea-
sure, as well as decreased invalid and incomplete connections
(Table 1). Furthermore, our analysis of the AR demonstrated
how the proposed refinforcement tractography algorithm can
produce more biologically plausible, i.e. topographically co-
herent, bundles with robustness to changes in brain morphom-
etry across typical changes across a typical adult population.
The AR is a valuable test case, as it includes sharp turns, fan-
ning, and a substantial crossings with longitudinal and projec-
tion pathways (Fig. 2). Our quantitative analysis showed that
the proposed hybrid method provides greater reliability than
either deterministic or probabilistic tracking alone, as shown
by a lower volume CV and higher dice scores (Fig. 3). Our
approach makes a simplifying assumption of a single com-
partment per voxel, and the results lend some support to this
assumption as a useful simplification for improving tracking.
Furthermore, our results showed that, under identical seeding
conditions, the proposed approach included a greater propor-
tion of the seeds in the final bundle, suggesting some measure
of greater efficiency.

It should be noted that there are, of course, other prob-
abilistic and deterministic tracking algorithms than tested
here, and a more extensive evaluation would be required to
draw broad conclusions regarding the relative performance of
hybridized tractography. However, the experimental design
of our evaluation was tightly controlled for potential con-

founds, such as software implementation, seed placement,
and tracking parameters, so what we can conclude is that the
hybridization of probabilistic and deterministic approaches
is indeed a useful and promising direction for improving
tractography methods. Furthermore, the framework of rein-
forcement learning may prove to be a fruitful direction for
such approaches. We explored a basic system here, but it
demonstrates how probabilistic and deterministic approaches
map logically onto exploration and exploitation schemes. We
used optimal compartment assignment as a way to bridge
these two, but there are possibly other interesting and valu-
able intermediates.

In summary, we have presented a novel hybrid trac-
tography algorithm that is designed with inspiration from
reinforcement learning to leverage the strengths of both prob-
abilistic and deterministic tractography algorithms through
distinct stages for exploration and exploitation. Our exper-
iments indicate that such a hybrid approach offers benefits
for the reconstruction of complex fiber bundles that are dom-
inated by crossing fibers, such as the acoustic radiations.
In particular, the resulting fiber bundle models tend to have
fewer false positive tracks and greater topographic coherence.
This demonstrates the benefits of combining tractography
approaches, and it highlights the opportunities ahead for in-
tegrating reinforcement learning strategies into tractography
algorithms. Our implementation is available online as part of
the Quantitative Imaging Toolkit.
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