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Abstract. We present a geometric approach for constructing shape atlases of sul-
cal curves on the human cortex. Sulci and gyri are represented as continuous open
curves in R

3, and their shapes are studied as elements of an infinite-dimensional
sphere. This shape manifold has some nice properties – it is equipped with a Rie-
mannian L

2 metric on the tangent space and facilitates computational analyses
and correspondences between sulcal shapes. Sulcal mapping is achieved by com-
puting geodesics in the quotient space of shapes modulo rigid rotations and repa-
rameterizations. The resulting sulcal shape atlas is shown to preserve important
local geometry inherently present in the sample population. This is demonstrated
in our experimental results for deep brain sulci, where we integrate the elastic
shape model into surface registration framework for a population of 69 healthy
young adult subjects.

1 Introduction

A surface-based morphometric analysis of the cortex has been shown to have wide reach-
ing applicability for the purpose of mental disease detection, progression, as well as pre-
diction and understanding of normal and abnormal developmental behaviors. Cortical
morphometry has three major ingredients: i) surface representation, ii) registration and
alignment for construction of atlases, and iii) statistical analysis of deformations or warps
explaining the variability of surface features in a given population. Surface registration
aims at determining point-to-point correspondences between a pair of surfaces by align-
ing several homologous features on the two cortical surfaces. Theses correspondences
can be achieved either automatically by using both local and global features as in the
case of Dale et al. [2], or in a semi-automated manner, using expertly delineated sulcal
and gyral landmarks as in the case of Thompson et al. [10,4]. The underlying idea in
both approaches is modeling (either explicitly or indirectly) the sulcal and gyral patterns
exclusively based on local geometric features. These features are usually 3D continuous
space curves corresponding to the deepest regions of the valleys for sulci, and topmost
regions of the ridges for the gyri. The main advantage of using explicit landmarks is the
incorporation of expert anatomical knowledge that improves the consistency in matching
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of homologous features. This in turn potentially improves statistical power in the neigh-
borhood of the landmarks. Additionally, increasing the number of consistent landmarks
also improves the alignment accuracy, thereby allowing more control in the registration
process. Previously, landmark curves have mostly been used as boundary conditions for
various cortical alignment approaches. Various researchers have modeled the sulci and
gyri using different representations. Tao et al. [9] represent sulci using landmark points
on curves, and build a statistical model using a Procrustes alignment of sulcal shapes.
Vaillant et al. [11] represent cortical sulci by medial surfaces of cortical folds. Although,
the advantage of this model is that it represents entire cortical folds, a limitation of this
method is the use of unit speed parameterizations of active contours for constructing
Procrustes shape averages for sulci. Furthermore, for the two approaches, the shapes are
represented by finite features or landmarks, and thus are limited in the characterization
of rich geometric detail that manifests in the cortical folds giving the sulci their shapes.
Recently, there have been several interesting approaches using continuous representa-
tions for sulci [8,1,3]. For e.g. Auzias et al. [1] model whole sulci using distributions of
point sets and use a LDDMM framework for registering not only the surfaces but full
MRI volumes. Durrleman et al. [3] use currents for modeling curves and surfaces.

In our work, we represent sulci and gyri by parameterized three-dimensional curves.
However, unlike previous approaches, we construct a shape space of such sulcal and
gyral curves and build a statistical model of sulci and gyri intrinsically on the shape
space. Our approach models the whole curve without the use of landmarks or discrete
parametric representations and deals with functional mappings of curve instances on
the shape manifold. The main contributions of this paper are as follows: i) an inverse-
consistent diffeomorphic framework for matching sulcal shapes, ii) An intrinsic sulcal
shape atlas based on the Riemannian metric on the shape manifold, and iii) integration
of sulcal curve diffeomorphisms in driving cortical surface registrations. To our knowl-
edge, the proposed framework of direct diffeomorphic three-dimensional sulcal curve
mappings have not been used in cortical registration before. This paper is organized
as follows. Section 2 outlines the shape modeling scheme for sulci and gyri. It also
outlines the procedure for computing statistical shape averages for sulci and gyri for
a given population. Section 3 incorporates the sulcal shape model in cortical surface
registration, followed by results and conclusion.

2 Diffeomorphic Shape Analysis of Sulci and Gyri

In this section, we describe the modeling scheme used to represent sulcal and gyral
shape features. We represent the cortical valleys (sulci), and the ridges (gyri) by open
curves. However unlike previous approaches which have used landmarks for represent-
ing the sulcal and gyral features, we will use continuous functions of curves for repre-
senting shapes.

2.1 Shape Representation

Let β be a 3D, arbitrarily parameterized [5], open curve, such that β : [0, 2π] → R
3.

We represent the shape of the curve β by the function q : [0, 2π] → R
3 as follows,
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q(s) =
β̇(s)√
||β̇(s)||

∈ R
3 . (1)

Here, s ∈ [0, 2π], || · || ≡ √
(·, ·)R3 , and (·, ·)R3 is the standard Euclidean inner prod-

uct in R
3. The quantity ||q(s)|| is the square-root of the instantaneous speed, and the

ratio q(s)
||q(s)|| is the instantaneous direction along the curve. The original curve β can be

recovered upto a translation, using β(s) =
∫ s

0
||q(t)|| q(t) dt. In order to make the rep-

resentation scale invariant, we will normalize the function q as q = q√
(q,q)

R3
. We now

denote S
q ≡ {q|q(s) : [0, 2π] → R

3| ∫ 2π

0
(q(s), q(s))R3ds = 1} as the space of all unit-

length, elastic curves. On account of scale invariance, the space S
q becomes an infinite-

dimensional unit-sphere and represents all open elastic curves invariant to translation
and uniform scaling. The tangent space of S

q is easy to define and is given as Tq(Sq) =
{w = (w1, w2, . . . , wn)|w(s) : I → R

3 ∀s ∈ [0, 2π) | ∫ 2π

0
(w(s), q(s))R3 ds = 0}.

Here each wi represents a tangent vector in the tangent space of S
q . Due to the spherical

nature of the shape space, any vector on the shape space can be transformed to a tangent
vector by simply subtracting its normal component. We define a metric on the tangent
space as follows. Given a curve q ∈ S

q , and the first order perturbations of q given by
u, v ∈ Tq(Sq), respectively, the inner product between the tangent vectors u, v to S

q

at q is defined as, 〈u, v〉 =
∫ 2π

0
(u(s), v(s))R3ds. Now given two shapes q1 and q2, the

translation and scale invariant shape distance between them is simply found by measur-
ing the length of the geodesic connecting them on the sphere. We know that geodesics
on a sphere are great circles and can be specified analytically. Thus given a tangent
vector f ∈ Tq1(Sq), the geodesic on S

q between the two points q1, q2 ∈ S
q along f ,

for a time t is given by χt(q1; f) = cos
(
t cos−1〈q1, q2〉

)
q1 + sin

(
t cos−1〈q1, q2〉

)
f

where t is a subscript for time. Then the geodesic distance between the two shapes q1

and q2 is given by d(q1, q2) =
∫ 1

0

√〈χ̇t, χ̇t〉dt. The quantify χ̇t is also referred to as
the velocity vector field on the geodesic path χt So far, we have constructed geodesics
between a pair of curves directly on the sphere (Sq). In doing so, we implicitly assumed
that the curves were rotationally aligned, as well as the parameterization of the curves
was fixed. However the shape of a curve remains unchanged under rotations as well as
different parameterizations of the curve. Thus in order to register shapes accurately, the
matching should be invariant to rotations as well as reparameterizations. This matching
is achieved by constructing the space of elastic shapes, and measuring the “elastic” dis-
tance between curves under certain well-defined shape-preserving transformations as
explained in the next section.

2.2 Geodesics between Elastic Shapes

In order to match curves elastically, in addition to translation and scaling, we con-
sider the following reparameterizations and group actions on the curve that preserve
its shape. A rigid rotation of a curve is considered as a group action by a 3 × 3 rota-
tion matrix O3 ∈ SO(3) on q, and is defined as O3 · q(s) = O3q(s), ∀s ∈ [0, 2π].
A curve traveled at arbitrary speeds is said to be reparameterized by a non-linear dif-
ferentiable map γ (with a differentiable inverse) also referred to as a diffeomorphism.
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We define D = {γ : S
1 → S

1} as the space of all orientation-preserving diffeo-
morphisms. Then the resulting variable speed parameterizations of the curve can be
thought of as diffeomorphic group actions of γ ∈ D on the curve q. This group ac-
tion is derived as follows. Let q be the representation of a curve β. Let α = β(γ) be
a reparameterization of β by γ. Then the respective velocity vectors can be written as
α̇ = γ̇β̇(γ) = γ̇q(γ)||q(γ)|| = ||√γ̇q(γ)||√γ̇q(γ). The reparameterization of q by γ is
defined as a right action of the group D on the set C and written as q · γ =

√
γ̇ (q ◦ γ).

Thus we are interested in constructing the shape space as a quotient space of S
q , modulo

shape preserving transformations such as rigid rotations and reparameterizations.
Altogether, the set of curves affected by the group actions above, partition the space

S
q into equivalence classes. We now define the elastic shape space as the quotient space

S = S
q/(SO(3) × D). The problem of finding a geodesic between two shapes in S

is same as finding the shortest path between the equivalent classes of the given pair of
shapes. Since the actions of the re-parametrization groups on C constitute actions by
isometries, this problem also amounts to minimizing the length of the geodesic path,
such that

de(q1, q2) = min
O3∈SO(3),γ∈D

d(q1, (O3q2) · γ), (2)

where d is given by the geodesic distance. In order to optimize Eq. 2, we recognize that
for a fixed rotation O3, the distance de can be obtained by finding the optimal reparam-
eterization γ̂ between q1 and q2, whereas for a fixed γ, the distance de is calculated by
finding the optimal rotation Ô3. Thus in order to minimize the distance in Eq. 2, we
alternate between optimizing over O3 and γ repeatedly until the process converges. At
each step, the optimal rotation Ô3 is given by Ô3 = USV T , where, all U, S, V ∈ R

3×3,
and given by the singular decomposition of Ô3. Furthermore this decomposition is ap-
proximated using the L

2 function given by USV T =
∫ 2π

0
q1(s)q2(s)T ds. Also, at each

iteration, we compute a geodesic path between the starting shape q1 and the target shape
O3q2 ·γ. Upon convergence of this procedure, we also obtain the tangent vector χ̇ along
the geodesic path connecting the two shapes.

2.3 Construction of a Statistical Sulcal Atlas

In order to construct a sulcal atlas of a large population of curves in the shape space,
we need the notion of a shape average based on the sulcal and gyral curves. Owing to
the nonlinearity of the shape space, the computation of an average shape is not straight-
forward. There are two well known approaches of computing statistical averages in
such spaces. The extrinsic shape average is computed by projecting the elements of the
shape space in the ambient linear space, where an Euclidean average is computed, and
subsequently projected back to the shape space. On the other hand, the intrinsic aver-
age, also known as the Karcher mean ([6]) is computed directly on the shape space,
and makes use of distances and lengths that are defined strictly on the manifold. It
uses the geodesics defined via the exponential map, and iteratively minimizes the av-
erage geodesic variance of the collection of shapes. We will adopt the intrinsic ap-
proach by computing the Karcher mean for a given set of shapes. The Karcher mean
is computed by minimizing the geodesic variance for a given collection of shapes. In
other words, given a set of shapes {qi}, i = 1, . . . , N , the Karcher mean is given by
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μ = argminqµ

∑N
i=1 de(qμ, qi)2, i = 1, . . . , N . This mean is computed by an opti-

mization procedure that involves repeated computations of geodesics from each of the
shapes of the population to the current estimate of the mean. Next, we describe the pro-
cedure of combining the nonlinear sulcal atlas along with cortical surface registration
for mapping brains across populations.

3 Integrating Sulcal Shapes with Cortical Surface Registration

In this section, we introduce our scheme for registering cortical surfaces. There have
been several prominent approaches [10,4,1] for cortical registration in the neuroimag-
ing community. Our method, although based on the same conceptual framework of
elastic registration, provides a slightly different model for computing the deformation,
with certain improvements in the implementation that increase flexibility and efficiency.
A general outline of the process is as follows. The first stage is to establish homology of
the curve data, which is accomplished by matching the shapes in a Riemannian shape
space framework. Next, the surfaces and curves are conformally mapped to the sphere,
establishing a common space where deformation will be defined. Following this, there is
a rotational alignment of the surfaces and curves to account for the differences in spher-
ical mapping orientations. Next, the spherical mean of the curves is found to define the
atlas curves for the domain of the deformation. Finally, the elastic deformation of the
atlas on the sphere is found, which constrained to map the atlas curves to each case’s set
of curves. The surfaces are reparameterized by this elastic deformation. The resulting
surfaces then have homologous coordinate systems, allowing local comparisons across
the group. We define a set of N surfaces, {M1, ..., MN} where Mi ⊂ R

3. We repre-
sent their mesh geometry using a set of simplicial complexes, {(K1, f1), ..., (KN , fN )}
where Ki is a simplicial complex and fi : K �→ Mi. For each surface i, we have
a set of M landmarks represented by continuous open curves {βi1, ..., βiM} where
βij : [0, 2π] �→ Mi, and the set of curves {βij : i ∈ [1, N ]} represent homologous
regions on the set of surfaces. Additionally, the curves are discretized, where the j-th
curve has kj vertices. The first step of the process is to establish correspondence be-
tween the homologous landmark curves by computing mappings γ̂ij : [0, 2π] �→ [0, 2π]
such that for curve j and parameter t, the set {βij(γij(t)) : i ∈ [1, N ]} is a set of
homologous points on the surfaces. This is accomplished by mapping the curves to a
Riemannian manifold shape space, where reparameterizations are defined by geodesics
to the Karcher mean of the curves in the shape space.

3.1 Spherical Mapping and Alignment

Next, the meshes are simplified using a QEM-based method, and a set of conformal
mappings is found from each surface to the unit sphere, {φ1, ..., φN} where φi : Mi �→
S2. The spherical mapping of the matched curves is then β̃ij = φi ◦ βij ◦ γij , which is
found using the barycentric coordinates of each curve vertex. A bounded interval hier-
archy is used to efficiently search for the coincident face of each curve vertex. Once the
data are mapped to the sphere, they are rotationally aligned to enforce a consistent ori-
entation of the spherical mappings. Given an arbitrarily chosen target, each set of curves
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is aligned to the target by computing the rotation and reflection that minimizes the least-
squared difference between the discretized curve coordinates. This is accomplished by
solving the unconstrained orthogonal Procrustes problem using singular value decom-
position, allowing reflections to account for the inversion between the hemispheres. For
an arbitrary T ∈ {β̃ij : i ∈ [1, N ]}, we find an optimal alignment Ri ∈ R

3×3 and then

optimally rotate the data as, φ̂i = Ri ◦ φi, and β̂ij = Ri ◦ β̃ij .

3.2 Spherical Curve Atlas

Once the data have been aligned on the sphere, the mean curves are computed to serve
as the atlas curves in the surface warping. The Karcher mean on the sphere is found for
each vertex of each curve. In this method, an initial guess is found by the normalized
average of the points. For this point, the tangent space is defined by the gnomonic
projection. A new mean is computed in the tangent space and then is mapped back to
the sphere, repeating this process until convergence. We can express the curve atlas as
the set {βj : j ∈ [1, M ]}, where βj is the karcher mean of {β̂ij : i ∈ [1, N ]}.

3.3 Elastic Surface Warping

For surface i, the deformation of the atlas is φi : S2 �→ S2, where φi(βj(t)) = β̂ij(t)
for t ∈ [0, 2π], j ∈ [1, M ]. Six flattenings of the sphere are defined {ϕn : S2 �→ [0, 1]2 :
n ∈ 1, 2, 3, 4, 5, 6}. For a point on the sphere, p ∈ S2, the optimal flattening is chosen
as ϕp = arg minϕn ‖ϕn(p) − (

1
2 , 1

2

) ‖. The displacement field up : S2 �→ R
2 is then

up(x) = ϕp(φi(x)) − ϕp(x). At non-landmark points, i.e. x ∈ S2, x /∈ ∪j{β̂ij(t) :
t ∈ [0, 2π]}, the mapping is constrained to satisfy a small deformation elastic model as
proposed by Thompson et al. [10], and is given by

μ�2up(x) + (λ + μ)�(� · up(x)) = 0 (3)

The atlas mesh is defined on the sphere by tessellating the sphere with a subdivided oc-
tahedron [7]. This representation is advantageous for its multiscale processing and flat-
tening. The flattening can be imagined as follows. First, choose one of the vertices of the
octahedron to map the center of the grid. Then, cut the four far edges that do not contain
the center vertex. These edges are duplicated and define the boundary of the grid, and
the opposite vertex maps to the four corners of the grid. The deformation is computed
iteratively using multigrid finite differences, where the octahedral subdivisions and flat-
tenings are used for prolongation and restriction operations. The solver accounts for the
spherical topology of the domain by solving the above nonlinear model and resampling
the deformed atlas by establishing vertex homology between the meshes.

4 Experimental Results

Our experimental data consisted of 3T MRI acquisitions (GE) for a population of 69
healthy, Chinese, right-handed volunteers (30 men, 39 women; 18-33 yr) using a trans-
verse 3D T1-weighted fast spoiled gradient-echo (FSPGR) sequence (TR/TE = 6.8
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ms/2.9 ms; voxel size = 0.47 mm × 0.47 mm × 0.70 mm; FOV = 24.0 × 24.0 cm;
matrix size = 512 × 512; flip angle = 10°, slice thickness = 1.4 mm, and slice gap = 0.7
mm). After preprocessing the raw data, and registering it stereotaxically to a standard
atlas space, the cortical surfaces for these subjects were extracted using an automated
algorithm [2]. For each of these subjects, a total of 27 landmark curves were manu-
ally traced. Figure 1 shows the original 27 landmark curves for each of the 69 subjects
for both hemispheres overlaid together. Additionally, Figure 1 also shows the intrinsic
sulcal shape averages of the 27 landmark curves, as well as the respective extrinsic Eu-
clidean averages for the same. While computing the extrinsic average, each curve for
the same landmark type was mapped to its q representation, thus making it scale and
translation invariant. The Euclidean average of all the q functions was then computed
after a pairwise rotational alignment. Both the Karcher mean shapes as well as the Eu-
clidean averages were then mapped back to the native space in order to visualize them.
It is observed that the intrinsic averages although smooth, have preserved important
features along the landmarks, thus representing the average local shape geometry along
the sulci and gyri. This also implies that the shape average has not only captured the
salient geometric features, but has also reduced the shape variability in the population.
In order to demonstrate this property, we plot the variance of the shape deformation for
each landmark type as captured by the velocity vector along the geodesic path, both
for Euclidean extrinsic, and Riemannian intrinsic averages. This quantity measures the
invariant deformation between a pair of shapes, and only depends upon the intrinsic
geometry of the shapes. For both of these averages, the tangent vectors were computed
using the procedure outline in Section 2.2 and the computations were done using the
elastic geodesic method for consistent comparisons. Figure 2 shows a comparison of
the plots of 1

69

∑69
1 (〈χ̇(i), χ̇(i)〉)2 for each of the landmarks, taken along the length of

Fig. 1. Lateral, frontal, and medial views of, top row: 27 landmark sulci and gyri for 69 sub-
jects, middle row: Euclidean sulcal shape averages, bottom row: Karcher shape average for each
landmark type
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Fig. 2. Comparison of the geodesic variance for the entire sulcal population for each of the 27
landmarks, both for Euclidean shape averages, as well as elastic shape averages, along the length
of the curves

Fig. 3. Lateral, axial, ventral, and medial views of the reconstructed cortical surface with Eu-
clidean sulcal matching (top), and diffeomorphic sulcal matching (bottom). The surfaces are col-
ored according to shape curvedness.

the curve, for both Euclidean shape averages, as well as intrinsic shape averages. Here
the χ̇(i) is the tangent vector from the mean shape to ith shape. From the color-coded
map, it is observed that the intrinsic average has reduced the variance in terms of shape
geometry deformation, and thus is a better representative of the population.

Next, we demonstrate results of cortical surface registration with and without the
incorporation of the above diffeomorphic sulcal atlas in Figure 1. As an initial step,
we compute geodesics between the average shape of the landmark, and the set of all
sulci belonging to that landmark type, and reparameterize the set of sulci according to
inverses of the resulting diffeomorphisms. We then follow the steps outlined in Sec. 3
in order to warp all the surfaces meshes to the atlas. Figure 3 shows three the lateral,
axial, ventral, and medial views of the reconstructed cortical surface averages from the
flattened representations. The surface is colored by its curvedness in order to highlight
the fundi of the sulci as well as the ridges of the gyri. It is observed that the surface
with diffeomorphic sulcal mapping shows richer geometric detail than the traditional
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Fig. 4. R.M.S error of the distance from each sample surface to the average reconstructed cortical
surface with and without diffeomorphic sulcal matching shown for left hemisphere. There is
considerable improvement in registration even where there is an absence of landmarks (labeled
as A).

Euclidean reconstruction. As another measure of distortion, we also computed the root
mean square (r.m.s.) error of the distance from each sample surface to the average recon-
structed cortical surface with and without diffeomorphic sulcal matching. It is observed
that the diffeomorphic method yields lower errors throughout the surface as compared
to the Euclidean matching. Interesting, the diffeomorphic mapping approach has also
shown considerable improvement in the frontal lob (Labeled as A in Figure 4) even in
the absence of sulcal landmarks. The results from spherical alignment are also shown
for comparison.

5 Conclusion

We have presented a direct diffeomorphic approach for shape analysis of sulcal and
gyral features and demonstrated its application in cortical surface registration. We em-
phasize that the use of the sulcal atlas is not limited to registration alone, and can be also
used to study cortical patterns for developmental, diseased or even normative patterns.
The success of our method on deep brain sulci also demonstrates the effectiveness in
capturing the intrinsic shape variability of the sulci and gyri. In the future, we intend
to perform extensive validation studies for large populations as well as apply the sulcal
models for neuroimaging population studies.
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