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A B S T R A C T

White matter maturation is a nonlinear and heterogeneous phenomenon characterized by axonal packing,
increased axon caliber, and a prolonged period of myelination. While current in vivo diffusion MRI (dMRI)
methods, like diffusion tensor imaging (DTI), have successfully characterized the gross structure of major white
matter tracts, these measures lack the specificity required to unravel the distinct processes that contribute to
microstructural development. Neurite orientation dispersion and density imaging (NODDI) is a dMRI approach
that probes tissue compartments and provides biologically meaningful measures that quantify neurite density
index (NDI) and orientation dispersion index (ODI). The purpose of this study was to characterize the magnitude
and timing of major white matter tract maturation with NODDI from infancy through adolescence in a cross-
sectional cohort of 104 subjects (0.6–18.8 years). To probe the regional nature of white matter development,
we use an along-tract approach that partitions tracts to enable more fine-grained analysis. Major white matter
tracts showed exponential age-related changes in NDI with distinct maturational patterns. Overall, analyses
revealed callosal fibers developed before association fibers. Our along-tract analyses elucidate spatially varying
patterns of maturation with NDI that are distinct from those obtained with DTI. ODI was not significantly asso-
ciated with age in the majority of tracts. Our results support the conclusion that white matter tract maturation is
heterochronous process and, furthermore, we demonstrate regional variability in the developmental timing
within major white matter tracts. Together, these results help to disentangle the distinct processes that contribute
to and more specifically define the time course of white matter maturation.
1. Introduction

Human postnatal brain development is a complex process that follows
a dynamic and temporally overlapping series of cellular events that in-
cludes the development and formation of axonal pathways through
cellular proliferation, differentiation, synaptogenesis, apoptosis, and a
prolonged period of myelination (Rice and Barone, 2000). Structural MRI
enables the quantification of gross anatomical changes during develop-
ment that reflect these cellular processes. Childhood and adolescence are
marked by significant decreases in cortical gray matter, indicative of
synaptic pruning (Gogtay et al., 2004; Huttenlocher, 1979), and increases
in cerebral white matter, believed to reflect myelination (Matsuzawa
et al., 2001; Miller et al., 2012).

Quantification of white matter microstructure in vivo is made possible
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with diffusion MRI (dMRI), a technique that elucidates the underlying
white matter organization by measuring water displacement patterns in
the brain (Beaulieu, 2002). Diffusion tensor imaging (DTI) techniques
have been used to probe microstructural changes in major white matter
tracts. Developmental studies in children and adolescents using DTI have
consistently demonstrated heterogeneous and nonlinear increases in
fractional anisotropy (FA) with age (Clayden et al., 2012; Eluvathingal
et al., 2007; Imperati et al., 2011; Krogsrud et al., 2016; Lebel et al., 2012,
2010; 2008; Lebel and Beaulieu, 2011; Tamnes et al., 2010; Ullman and
Klingberg, 2016; Wierenga et al., 2015). While DTI-based metrics are
sensitive to age-related changes in microstructure, they are not specific
(Beaulieu, 2009; Pierpaoli and Basser, 1996). For example, an increase in
FA may be due to an increase in neurite density, a decrease in orientation
dispersion, or a combination of factors (Jones et al., 2013). Additionally,
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DTI measures suffer from partial volume effects due to free-water
contamination and complex fiber orientations, which bias the
diffusion-weighted signal and complicate the interpretation of changes in
DTI parameters (Jones and Cercignani, 2010).

Multi-compartment dMRI models overcome these limitations by
acquiring diffusion-weighted images at multiple gradient strengths in
order to probe tissue compartments with different diffusion profiles
(Assaf and Cohen, 2000; Stanisz et al., 1997). Neurite Orientation
Dispersion and Density Imaging (NODDI) is a multi-compartment model
that estimates tissue compartment parameters associated with free,
hindered, and restricted diffusion (Zhang et al., 2012). NODDI models
the intracellular volume fraction, known as neurite density index (NDI),
and orientation dispersion index (ODI), which provide biologically
meaningful measures that quantify specific microstructural processes.
NDI measures the amount of restricted diffusion within a voxel and is
considered an index of neurite density. ODI describes the degree of
neurite angular variation, which allows for modeling the full spectrum of
neurite orientation patterns observed in the brain.

Previous studies of white matter development using NODDI demon-
strate age-related increases in NDI across tracts in childhood and
adolescence (Chang et al., 2015; Geeraert et al., 2019; Jelescu et al.,
2014; Kodiweera et al., 2015; Mah et al., 2017) and NDI has been shown
to account for more age-related variance than DTI measures in devel-
opment (Genc et al., 2017; Mah et al., 2017). In contrast, previous studies
have shown that ODI remains relatively stable throughout late childhood
and adolescence (Chang et al., 2015; Mah et al., 2017), however few
studies have explored the trajectory of ODI from infancy through
adolescence. These findings suggest that NODDI parameters are sensitive
to unique developmental features in white matter and can provide
complementary information to that provided with DTI.

The main limitation of calculating a global measure to characterize an
entire white matter tract is that it may obscure potentially valuable in-
formation about focal developmental changes within the tract. Along-
tract approaches provide a framework to ameliorate this limitation by
characterizing the spatial pattern of diffusion parameters within indi-
vidual white matter bundles. This tract-based approach also provides
enhanced sensitivity to regional developmental trajectories in major
white matter tracts. Previous diffusion studies using along-tract ap-
proaches found diffusion parameters and their developmental trajec-
tories vary along the length of individual fiber bundles in toddlers
(Goodlett et al., 2009; Johnson et al., 2014) and children/adolescents
(Chen et al., 2016; Colby et al., 2011; Yeatman et al., 2012b). Therefore,
it is reasonable to expect that NODDI measures will also demonstrate
distinct regional patterns of development within white matter tracts but
with the added benefit of providing enhanced sensitivity to microstruc-
tural features. Characterization of these diffusion features together with
the DTI parameters FA, mean diffusivity (MD) and radial diffusivity (RD)
will provide a more comprehensive understanding of microstructural
processes in white matter during critical periods of brain maturation.
Here, we propose to characterize the magnitude and timing of develop-
ment reflected with NODDI parameters in major white matter tracts
using an along-tract approach put forth by Colby et al. (2012). This
approach first consistently parameterizes streamlines representing each
bundle to match to a reference bundle; then the bundle is partitioned
cross-sectionally into equidistant points that can be statistically analyzed
across the population. In contrast to whole bundle analysis, this can
provide enhanced sensitivity for the detection of heterochronous patterns
of white matter development that may occur at finer anatomical scales
than otherwise available when examining parameters averaged across
entire bundles.

While some studies have explored the age-related NODDI parameter
changes of major white matter tracts in infancy (Jelescu et al., 2014;
Kunz et al., 2014) and childhood/adolescence (Chang et al., 2015;
Geeraert et al., 2019; Genc et al., 2017; Mah et al., 2017), the present
study is the first to examine the complete developmental trajectory
through infancy, childhood, and adolescence. The purpose of this study
2

was to characterize the magnitude and timing of major white matter tract
maturation with NODDI in a cross-sectional cohort of 104 participants
(0.6–18.8 years). Furthermore, we utilize along-tract analyses to spatially
characterize developmental patterns along the length of major white
matter tracts. The NODDI microstructural parameters may provide
unique insight into the complex development of white matter tracts
during this dynamic period.

2. Materials and methods

2.1. Subjects

Neuroimaging and demographic data were obtained through the
publicly accessible Cincinnati MR Imaging of NeuroDevelopment (C-
MIND) data repository (http://research.cchmc.org/c-mind) at Cincinnati
Children’s Hospital (Holland et al., 2015). Participants had no
self-reported history of head trauma or neurological, developmental or
psychiatric disease. In total, 104 right-handed typically developing in-
fants, children and adolescents between the ages of 0.6 and 18.8 years
were included in the cross-sectional study (M ¼ 7.9, SD ¼ 4.9 years; 56
female). There were no significant sex differences in the age distribution
of the cohort, t(102) ¼ 1.75, p ¼ .09. Parent/guardian consent were
obtained for all subjects and procedures were approved by the Institu-
tional Review Board of the Cincinnati Children’s Hospital Medical Center
(CCHMC).

2.2. Image acquisition

Participants and their families were provided with audio recordings
and headphones to acclimatize children to the MRI environment prior to
the day of scan using the desensitization procedure outlined in (Vannest
et al., 2014). DWI data was acquired over two sessions to prevent
younger children from becoming restless and compromising image
quality due to motion. For infants and toddlers, scans were scheduled at
night and acquired during non-sedated sleep. For older children, scans
were acquired during the day when they were awake. MRI data was
obtained at CCHMC using a Philips 3T Achieva system and a 32-channel
head coil. Diffusion-weighted images (DWI) were obtained using a
spin-echo, echo-planar imaging (EPI) method with intravoxel incoherent
motion (IVIM) gradients. For each subject, 2 DWIs were obtained with
the following parameters: 2 mm isotropic voxels, 112x109 acquisition
matrix, and 61 noncollinear diffusion sensitizing gradient directions with
7 non-diffusion-weighted (b0) images interspersed throughout the
acquisition and averaged into a single image. The scans differed in the
following parameters: (1) TR ¼ 6614 ms, TE ¼ 81 ms, b ¼ 1000 s/mm2

and (2) TR ¼ 8112 ms, TE ¼ 81 ms, b ¼ 3000 s/mm2. T1-weighted
images were acquired for anatomical alignment using turbo-field echo
MPRAGE sequence with the following parameters: 1 mm isotropic voxels,
256x224 � 160 mm FOV, TI ¼ 939 ms, TR ¼ 8.1 ms, TE ¼ 3.7 ms.

2.3. Data preprocessing

C-MIND performed manual and automated quality control and co-
registration prior to release. Quality assurance procedures adapted
from the American College of Radiology (ACR) were employed (ACR,
2004). First, all b ¼ 0 vol were loaded into a movie loop to identify overt
processing failures. Next, the entire DWI dataset was run through DTI-
Prep (http://www.nitrc.org/projects/dtiprep) to automatically detect
signal drop out, slice interlace artifacts and excessive motion and vol-
umes acquired with a given diffusion direction were discarded if they
failed to meet the specified quality thresholds (Yuan et al., 2009). Last,
each image was reviewed by a trained radiologist to identify dis-
qualifying pathological abnormalities or anatomical distortions (Kaiser
et al., 2015). For the present study, DWI shells with at least 45 diffusion
directions were considered for analyses (Supplementary Table 1).

Images from each shell were separately preprocessed using FSL

http://research.cchmc.org/c-mind
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Fig. 1. Major white matter tracts used in the present study visualized
using tractography in a sample subject.
(Top) forceps minor (FMIN), cingulum (CGC), corticospinal tract (CST), inferior
longitudinal fasciculus (ILF) and forceps major (FMAJ). (Bottom) Anterior
thalamic radiation (ATR), uncinated fasciculus (UNC), superior longitudinal
fasciculus (SLF), inferior fronto-occipital fasciculus (IFO).
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(FMRIB, Oxford, UK), including corrections for motion and eddy current
distortions using the eddy_correct module (Smith et al., 2004). All MRI
images were then skull-stripped using FSL’s BET (Smith, 2002). The
NODDI model was estimated using multi-shell diffusion data acquired
with different acquisition parameters, which may lead to model esti-
mation errors. We mitigated the effects of unmatched diffusion protocols
by normalizing the shells with the B0 volumes, as recommended in
previous retrospective studies (Genc et al., 2018, 2017; Claire E. Kelly
et al., 2016; Owen et al., 2014) and according to the developer’s
recommendation (Counsell et al., 2014). Signal normalization was per-
formed by first producing a pair of average baseline scans from b0 images
with matching TR and TE, then each diffusion weighted image was
matched and normalized to its corresponding average baseline. Our
implementation of the normalization procedure is available in the Vol-
umeDwiNormalize module in QIT (https://cabeen.io/qitwiki). . In order
to perform multi-shell modeling with NODDI, the two DWIs per subject
were co-registered to a common space with corrected gradient tables
using AIR (Woods et al., 1998). For each subject, T1-weighted images
were registered to the aligned DWI using an affine transformation with
FSL’s FLIRT (Jenkinson et al., 2002).

2.4. Microstructure parameters

NODDI and DTI parameters were calculated per voxel across each
participant’s brain in native space. DTI parameters were also included for
template registration.

DTI Fractional anisotropy (FA), axial diffusivity (AD), radial diffu-
sivity (RD) and mean diffusivity (MD) were computed using a two-stage
weighted-least squares estimation scheme (Veraart et al., 2013). Quan-
tification of developmental processes were carried out with FA, MD and
RD.

NODDI NODDI parameters were estimated using in-house software
based on the NODDI Matlab Toolbox (Zhang et al., 2012). The NODDI
framework models 3 separate compartments: (1) the intracellular
compartment, such as axons and dendrites, is modeled as zero-radius
cylinders, (2) the extracellular compartment, such as glia and cell
bodies, is modeled with Gaussian anisotropic diffusion, and (3) the ce-
rebrospinal fluid (CSF) compartment is modeled with isotropic diffusion.
The full normalized signal is a mixture of these 3 diffusion environments:

S¼ð1� visoÞðvicSic þð1� vicÞSecÞ þ visoSiso (1)

where S is the full normalized signal; Sic, Sec, and Siso are the normalized
signals of the intracellular, extracellular, and CSF compartments,
respectively; and vic and viso are the normalized tissue density estimates of
the intracellular and CSF compartments, respectively (Zhang et al.,
2012). The orientation dispersion index (ODI), which describes the
extent that the FOD deviates from its primary diffusion direction, was
modeled using the Watson distribution (Zhang et al., 2011a).

2.5. Fiber tracking

An atlas-based streamline tractography approach was used to obtain
fiber bundle models from the DWI data using the Quantitative Imaging
Toolkit (QIT) (Cabeen et al., 2018) and other software, noted where
applicable. We first manually delineated reference fiber bundles in the
IIT ICBM diffusion MRI template (Varentsova et al., 2014; Zhang et al.,
2011b) using deterministic streaming tractography with a kernel
regression framework (Cabeen et al., 2016). These reference bundles
were segmented according to a priori anatomical information from white
matter atlases and reference texts (Catani et al., 2002; Catani and de
Schotten, 2012; Wakana et al., 2007), and resulted in seed, inclusion, and
exclusion region of interest (ROI) masks for each tract. The diffusion
tensor imaging data of each subject was used to compute a deformation
from the template to subject space using the tensor-based deformable
registration algorithm in DTI-TK (Zhang et al., 2006). The ROI masks for
3

each tract were transformed to subject native space for use in
subject-specific bundle reconstruction. We used the tractography module
VolumeModelTracksStreamline in QIT to extract bundle models using
the ball-and-sticks models and bundles mask. The ball-and-sticks model
was estimated using FSL bedpostx (Behrens et al., 2007), which is a
Bayesian approach that estimates the number of diffusion compartments
and accounts for isotropic diffusion, partial voluming and crossing fibers.
We then reconstructed each bundle using the deterministic streamline
tractography with model-based Trilinear interpolation (Cabeen et al.,
2016) with an angle threshold of 75�, a step size of 0.5 mm, a minimum
length of 10 mm, and Runge-Kutta integration. We used a minimum
volume fraction of 0.05 which produced robust and comparable re-
constructions of fiber bundles across the subject age range. For each
bundle, seeding was initiated from 5 randomly placed samples within the
deformed seed ROI mask, tracks were retained using the deformed in-
clusion and exclusion ROI masks, and a track density map was computed.
The following 9 major bilateral major white matter tracts were recon-
structed for analysis: forceps major (FMAJ), forceps minor (FMIN),
anterior thalamic radiation (ATR), cingulum (CGC), corticospinal tract
(CST), inferior fronto-occipital fasciculus (IFO), inferior longitudinal
fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinated
fasciculus (UNC) (Fig. 1). To address possible performance issues related
to age-related differences in brain morphometry and image contrast, we
performed comprehensive quality control of our results, in which all
tracts were visually inspected and edited for anatomical accuracy in
native space.
2.6. Along-tract processing

To enable more fine-grained analysis of NODDI and DTI parameters
within white matter tracts, we employed an along-tract technique based
on (Colby et al., 2012). This approach partitions each tract
cross-sectionally into equidistant points using an automated process,
described as follows. First, for each bundle in the template, a single

https://cabeen.io/qitwiki
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prototypical curve was found by identifying the “centroid” curve with the
minimum Hausdorff distance to the others, and the curve was resampled
withpoints every5mmto represent regions along the lengthof thebundle.
Then, this prototype curvewas transformed into subject native spaceusing
the transform computed using DTI-TK. For a given tract, streamline
vertices are reparameterized to best match the prototype to allow for
correspondence across streamlines at different cross-sections. Then, the
average scalar parameter was computed for each group of vertices that
matched the vertices of the reference, and the resulting along-bundle
parameter maps were retained for subsequent statistical analysis.

2.7. Statistical analysis

For whole-tract analyses, males and females were combined because
no significant differences were identified (Supplementary Table 2). To
assess gross patterns of white matter tract development and provide
overall tract summary parameters, the NDI, ODI, FA, RD and MD values
were averaged over left and right sides for whole-tract analyses (e.g., Left
ATR þ Right ATR). In order to better localize the core of a tract, tract
density was used to derive per tract weighted averages of NODDI pa-
rameters according to:

x¼
Pn

i¼1wixiPn
i¼1wi

(2)

where n denotes the number of voxels within a tract and wi and xi are the
number of streamlines passing through and the calculated parameter for
the ith voxel within a tract, respectively, and x is the weighted parameter
average for a tract.

The relationship between tract parameter weighted averages and age
for each bilateral whole-tract analysis were tested using linear, quadratic,
logistic, Brody, von Bertalanffy, and negative exponential growth curve
models. Model selection using Bayesian information criteria (BIC) was
used to identify the curves that explained the most age-related variance
in NODDI and DTI parameters. Exponential maturational patterns were
described using Brody growth models. Brody growth models of the form:

parameter¼α� ðα� βÞe�k*age (3)

were fit to relate diffusion parameters and age using nonlinear least
squares regression where α is the asymptote, β is the y-intercept, and k is
the growth rate. Developmental timing was defined as the age at which a
given parameter reaches 90% of its asymptotic value, and the degree of
maturation was calculated as the percent change in parameter value at
this terminal age. Standard errors and confidence intervals for the co-
efficients, terminal maturation age, and percent change for each tract in
equation were calculated using bootstrap resampling with 5000 itera-
tions using R. Linear regression was used to describe the relationship
between ODI and age.

For along-tract analyses, Brody growth curves were fit at each point
along the left and right tracts separately to quantify the relationship
between regional parameter values and age. At each point, the age at
90% maturation was calculated. Bootstrap resampling was performed
along each tract with 5000 iterations to obtain a confidence interval
around the regional along-tract age estimates.

3. Results

Model selection using BIC showed that the Brody growth function
provided the best fit model for NDI used in subsequent analyses (Sup-
plementary Table 3).

3.1. Mean ODI changes with age

There were weak but significant correlations between age and ODI in
the corticospinal tract, β ¼ �0.0013, t(102) ¼ -2.66, p ¼ .009, forceps
4

major, β ¼ �0.0033, t(102) ¼ -3.16, p ¼ .002, and inferior fronto-
occipital fasciculus, β ¼ �0.0017, t(102) ¼ -2.53, p ¼ .013, with ODI
negatively associated with age in these regions (Fig. 2). No other major
white matter tract showed age-related changes in mean tract ODI. When
comparing across tracts, the corticospinal tract had the lowest average
ODI (M ¼ 0.257), while the cingulum had the highest average ODI (M ¼
0.385).

3.2. Mean NDI changes with age

Significant exponential changes, as measured with Brody growth
curves, were observed in all bilateral tracts (Fig. 3). The mean terminal
ages estimated from the Brody model for each tract ranged from child-
hood through adulthood (7.06–28.02 years,M¼ 16.98 years). Within the
age range studied, the forceps minor reached terminal NDI maturation
earliest (M ¼ 7.06 years, SE ¼ 2.45 years) and the inferior longitudinal
fasciculus reached terminal NDI maturation latest (M ¼ 18.63 years, SE
¼ 3.92 years). Three tracts had terminal age estimates outside the age
range sampled and include the inferior longitudinal fasciculus (M ¼
19.45 years, SE¼ 7.01 years), the uncinated fasciculus (M¼ 19.65 years,
SE ¼ 10.1 years) and the cingulum (M ¼ 28.02, SE ¼ 15.02) (Table 1).
The uncinate fasciculus showed the smallest percent change in NDI from
infancy through 18 years of age (65%), while the largest percent change
in NDI was observed in the forceps minor (121%). Variance in terminal
age estimates varied across tracts, with the smallest variance observed in
the forceps minor (SE ¼ 2.45 years) and the largest variance observed in
the cingulum (SE ¼ 15.02).

3.3. Mean DTI changes with age

The mean terminal age estimates for each tract using DTI parameters
ranged from childhood through adulthood (FA: 3.54–24.77, M ¼ 13.21
years; MD: 3.04–37.43, M ¼ 11.37 years; RD: 2.36–26.04, M ¼ 10.23
years) (Supplementary Figs. 1-3). The estimated terminal age for the
cingulum with FA (M ¼ 24.77 years) and the corticospinal tract with MD
(M ¼ 37.43 years) and RD (M ¼ 26.04 years) were outside the age range
sampled, For these tracts, bootstrapping yielded biologically implausible
standard errors for the upper asymptote (α) coefficient and age to reach
90% of α. The forceps minor reached terminal maturation earliest and
showed the largest percent change for FA (M ¼ 3.54, SE ¼ 1.64 years,
93%), MD (M ¼ 3.04, SE ¼ 1.33 years, 270%), and RD (M ¼ 2.36, SE ¼
1.28 years, 66%). The forceps major showed the smallest percent change
for FA (46%) andMD (71%), while the cingulum had the smallest percent
change for RD (28%).

3.4. Developmental rate and timing of tract-specific NODDI changes

The regional variability of the mean ODI distribution and NDI, FA,
MD and RD developmental rates within individual white matter tracts
can be represented with a vector of measures sampled at equidistant
points along the length of each tract. Average ODI varied along the
lengths of the tract and tended to be higher in superficial tract segments
compared to the core (Fig. 4). The ODI distribution along each tract did
not noticeably differ from the contralateral tract. For the tracts explored,
regional ODI was not significantly associated with age and could not be
described using a growth curve.

Average NDI varied along the lengths of each tract. In the majority of
tracts, the relationship between age and NDI at each point can be
described with an exponential growth curve. However, a multitude of
regions within the left and right cingulum did not show significant
exponential growth of NDI with age and were excluded from the
following analysis. Brody growth models applied to the resulting tracts
demonstrated that the estimated age at terminal maturation varies along
the length of each tract (Fig. 5). The estimated terminal ages in regions of
the forceps major, bilateral superior longitudinal fasciculus and left
inferior longitudinal fasciculus yielded unreliable age estimates outside



Fig. 2. Age-related changes in mean ODI for major white matter tracts.
ODI values are averaged across the left and right hemispheres for each tract. Regression line shows the best fit line relating age and ODI. Age was significantly and
negatively associated with age in the CST, FMAJ and IFO only. *p < .05; **p < .01.

Fig. 3. Age-related NDI increases in major
white matter tracts with exponential fits.
NDI values are averaged across the left and
right hemispheres for each tract. Maximum
NDI plateau of each tract are marked by the
vertical dotted red lines and plots are or-
dered according to how quickly the tract
reaches the NDI plateau. The ILF, UNC and
CGC are not marked because these tracts
reach the NDI plateau outside the age range
explored. Parameters for the exponential fits
for each tract are presented in Table 1.
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Table 1
Description of NODDI parameters in bilateral whole-tract analyses. Exponential
fits relating age and NDI for asymptote (α), y-intercent (β) and exponential time
constant (k) parameters, and age where NDI reaches 90% of the asymptotic value
(Texp). For all estimated parameters, the standard error is provided (SE).

Tract α (SE) k (SE) β (SE) Texp (SE)

ATR 0.606 (.023) 0.125 (0.021) 0.317 (.011) 18.68 (6.64)
CGC 0.614 (.121) 0.085 (0.030) 0.323 (.013) 28.02 (15.02)
CST 0.774 (.019) 0.160 (.026) 0.426 (.018) 14.24 (4.16)
FMAJ 0.640 (.023) 0.182 (.044) 0.367 (.024) 12.80 (9.28)
FMIN 0.538 (.009) 0.326 (.051) 0.243 (.026) 7.06 (2.45)
IFO 0.566 (.014) 0.144 (.021) 0.300 (.011) 18.63 (3.92)
ILF 0.567 (.023) 0.119 (.022) 0.299 (.010) 19.45 (7.01)
SLF 0.638 (.019) 0.165 (.027) 0.315 (.017) 14.29 (8.54)
UNC 0.486 (.020) 0.116 (.024) 0.295 (.008) 19.65 (10.10)

ATR, anterior thalamic radiation; CGC, cingulum; CST, corticospinal tract; FMAJ,
forceps major; FMIN, forceps minor; IFO, inferior fronto-occipital fasciculus; ILF,
inferior longitudinal fasciculus; SLF, superior longitudinal fasciculus; UNC, un-
cinate fasciculus.
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the age range for this study. The estimated age to maximum NDI tends to
be higher and more variable in the superficial white matter compared to
the tract core. In general, regions that have younger terminal age esti-
mates have smaller bootstrapped variance than regions that have older
terminal age estimates. Overall, the left and right tracts showed similar
patterns of maturation. Furthermore, the forceps minor and forceps
major showed similar rates of maturation between the left and right
hemispheres. However, left-right differences in maturational timing were
observed in the superior longitudinal fasciculus. While a faster rate of
NDI development was observed in the core of the left superior longitu-
dinal fasciculus, a slower rate of change was observed in the frontal half
of the right tract.

3.5. Developmental rate and timing of tract-specific DTI changes

The majority of tract segments showed exponential growth using FA,
MD and RD and the estimated age at terminal maturation varies along the
length of each tract (Supplementary Figs. 4-6). However, a multitude of
tract regions for the microstructural parameters tested had poor expo-
nential fits and were excluded from the analyses. These include the
bilateral cingulum and forceps major with FA, MD and RD; and the
corticospinal tract with MD and RD. With FA, unreliable estimates
outside the age range sampled were observed in the bilateral cortico-
spinal tract, inferior fronto-occipital fasciculus, inferior longitudinal
fasciculus and superior longitudinal fasciculus and the right anterior
thalamic radiation. Like NDI, the majority of the left and right tracts had
similar patterns of exponential maturation, including the forceps minor.
In general, major white matter tract regions reached their maximum
values later for NDI and FA (between 10 and 30 years of age) compared to
MD and RD (before the age of 10 years).

4. Discussion

The current study sought to characterize the maturation patterns of
major white matter tracts in typical development from infancy through
adolescence using NODDI. Using a semi-automated tractography
approach, we demonstrate widespread age-related increases in tract NDI.
NDI follows an exponential growth pattern and increases rapidly in in-
fancy and young childhood followed by a plateau in adolescence. NDI
represents the tissue volume fraction occupied by neurites, such as axons
and dendrites, and is considered a proxy for neurite density (Sepehrband
et al., 2015). Postmortem evidence suggests that increases in neurite
density, through myelination and axon packing, is a prominent feature of
white matter development in childhood (Benes, 1989; Miller et al.,
2012), and this is supported by findings that NDI accounts for more
age-related variance compared to DTI (Genc et al., 2017). Together, these
results demonstrate NDI’s sensitivity to developmentally relevant
6

processes. ODI, a measure of axonal orientation variance, was not
significantly associated with age in the majority of white matter tracts,
however weak negative correlations were observed between ODI and age
in the corticospinal tract, forceps major, and inferior fronto-occipital
fasciculus. Our results are largely in line with previous cross-sectional
findings of positive correlations between NDI and age and little or no
correlation between ODI and age (Chang et al., 2015; Geeraert et al.,
2019; Mah et al., 2017), suggesting this period is marked by progressive
increases in neurite density that are not accompanied by changes in
geometric complexity.

Previous studies shows that DTI metrics are sensitive to develop-
mental processes, however the relative contribution of various structural
features is unclear. While there is evidence that RD can be sensitive to
myelination (Song et al., 2002), it can also reflect fiber organization
(Wheeler-Kingshott and Cercignani, 2009). Additionally, FA is negatively
correlated with ODI and expresses a weak positive association with NDI
(Zhang et al., 2012). Consequently, orientation dispersion and, to a lesser
extent, neurite density influence FA estimates. It is therefore important to
interpret DTI results in the context of development with caution.

The magnitude and timing of neurite density maturation, as implied
by cross-sectional changes of NDI with age, can be obtained for each
white matter tract using the growth curve fit for that particular white
matter tracts. Significant variability was observed in the developmental
trajectories of whole-tract averages, with callosal fibers developing
earlier than association tracts. The age where maximum NDI is achieved
can be defined as the time to reach 90% of asymptote estimated from the
individual tract growth curves. The forceps minor and forceps major,
callosal connections critical for interhemispheric communication (Aboi-
tiz and Montiel, 2003), show the earliest changes of NDI with age,
reaching terminal NDI before 7 years of age. In particular, the forceps
minor, which connects bilateral fronto-temporal regions through the
genu of the corpus callosum, demonstrates the earliest and most rapid
NDI maturation, with NDI more than doubling by the time it reaches its
developmental plateau. Diffusion parameters similarly show the forceps
minor develops earlier than other tracts in this study, however the
developmental plateau estimated using FA, MD and RD is younger (~3
years) compared to NODDI (~7 years). These results are in agreement
with previous findings demonstrating early maturation of callosal pro-
jections using FA as a measure of microstructure (Cancelliere et al., 2013;
Chen et al., 2016; Krogsrud et al., 2016; Lebel et al., 2019, 2008). NODDI
studies have demonstrated sparse growth (Chang et al., 2015; Geeraert
et al., 2019) or small decreases (Mah et al., 2017) of NDI with age in the
forceps minor, which may be attributed to the older age ranges used in
their samples (children older than 6 years of age).

The corticospinal tract, a projection fiber critical for voluntary motor
control, reached mature NDI by mid-adolescence. Association tracts
projecting to the frontal lobes developed later and include the fronto-
temporal fibers of the superior longitudinal fasciculus, the fronto-
occipital fibers of the inferior fronto-occipital fasciculus and the
thalamo-cortical projections of the anterior thalamic radiation. The
inferior longitudinal fasciculus and fronto-temporal fibers of the uncinate
fasciculus and cingulum mature much later and reach peak NDI after 18
years of age. The developmental timing as measured with diffusion
tensor parameters partially agree with those estimated with NDI. The
anterior thalamic radiation and cingulum similarly develops later in
adolescence and adulthood with FA. These results are consistent with a
protracted pattern of frontal gray and white matter maturation observed
in several neurodevelopment diffusion studies (Asato et al., 2010; Chen
et al., 2016; Dean et al., 2015; Lebel et al., 2008; Tamnes et al., 2010). In
contrast to the relatively early development of NDI in the corticospinal
tract, MD and RD shows a much more protracted developmental trajec-
tory of this fiber bundle with the plateau reached well into adulthood.
This is not entirely unexpected as DTI and NODDI parameters are
sensitized to different microstructural phenomena that likely follow
distinct developmental time courses (Tau and Peterson, 2010). Because
there is evidence that regional developmental patterns in white matter



Fig. 4. Mean ODI along the length of major white matter tracts.
The average ODI is plotted for each point along bilateral major white matter tracts. The shaded region indicates the standard deviation.
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are linked to changes in behavior (Klarborg et al., 2013; Peters et al.,
2014; Ullman et al., 2014; Ullman and Klingberg, 2016; Yeatman et al.,
2012a), the variability in white matter development could provide
important clues as to the concomitant development of higher-level
cognitive functions. These results are critical for understanding the
timing of white matter microstructural changes that shape emerging
cognition.

While analyses of whole tract changes can inform the relative
ordering of white matter tract maturation, this approach may over-
simplify white matter developmental processes by assuming NODDI pa-
rameters change in unison across whole tracts. Along-tract analyses allow
for the quantification of tissue properties at discrete locations along the
7

path of white matter fibers. Using this approach, we demonstrate that
aging does not affect major white matter tract NDI uniformly. This is
consistent with previous results showing regional patterns of white
matter maturation using diffusion parameters (Chen et al., 2016; Colby
et al., 2011; Johnson et al., 2014; Yeatman et al., 2012b). In the present
study, superficial white matter components of the tracts tended to reach
terminal NDI at older ages and with more variance compared to the core
of the tracts, as evidenced with the forceps minor, left superior longitu-
dinal fasciculus, and right corticospinal tract. The variability may be due
in part to partial volume effects at the interface of gray and white matter.
However, as short, small-diameter fibers that provide intra-cortical
connections, superficial white matter has been shown to undergo



Fig. 5. Developmental timing of NDI maturation along white matter tracts.
The estimated age where NDI reaches 90% maturation is plotted for each point along the length of bilateral major white matter tracts. Error bars indicate the
bootstrapped 99% confidence interval. The along-tract development of the CGC is not included due to poor fitting.
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myelination later than deep white matter (Wu et al., 2016, 2014). ODI
also varies along the length of major white matter tracts, which can be
explained by local differences in directional coherence, including cur-
vature, crossing fibers, and the entrance and exit of smaller axon bundles
that intersect with the tract. Different rates of NDI maturation may be
explained by the heterochronous development of white matter (Miller
et al., 2012), as the rate of myelination can differ among white matter
regions.

While the forceps minor reached terminal maturation earliest on
average, along-tract analyses reveal the fibers passing through the genu
of the corpus callosum develop earlier than the rest of the tract using NDI,
8

FA, MD and RD. These findings are supported by previous studies on the
development of diffusion parameters demonstrate early rapid growth
localized to the genu (Chen et al., 2016; Johnson et al., 2014). The
agreement among NODDI and DTI parameters could be attributed to the
coherent organization of callosal fibers that result in reduced diffusion
signal contamination (Genc et al., 2017). These estimates may therefore
reflect true microstructural processes that are not obscured by crossing or
complex fiber orientations. Our results suggest the early maturation of
the genu observed with DTI parameters and NDI, which models the full
spectrum of fiber orientations, is due to an increase in neurite density via
axonal packing and myelination. The early maturation of the corpus
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callosum relative to the rest of the brain may be due to its role in inter-
hemispheric communication, which allows for functional integration,
hemispheric specialization, and information transfer between homolo-
gous cortical areas (Aboitiz and Montiel, 2003), and there is some evi-
dence supporting a general central-to-peripheral maturational gradient
in the brain (Deoni et al., 2012; Yakovlev and Lecours, 1967).

NDI maturational patterns for other tracts were not always in agree-
ment with DTI parameters. In the corticospinal tract, which projects from
the motor regions in the frontal lobule to the brainstem, NDI and FA show
opposite developmental changes. The developmental timing in the su-
perficial white matter adjacent to precentral regions is much slower with
NDI compared to FA. At the level of the midbrain, however, the devel-
opment of FA is prolonged and highly variable while that of NDI is more
stable at approximately 10 years of age. The inferior corticospinal tract
contains crossing fibers and decussations and it is possible that the large
variability observed with FA may be due to diffusion signal contamina-
tion. While the majority of regions along the white matter tracts
demonstrated exponential age-related change in diffusion microstruc-
tural parameters, the growth models did not always provide a good fit
and this was observed more frequently with the DTI measures. This is
consistent with other studies that showed subsets of white matter tracts
exhibiting exponential changes using a surface-based model (Chen et al.,
2016). Regions with poor exponential fits may have achieved terminal
maturation by birth, undergo a protracted maturational process that is
observed later than our sample allowed, or may be better described with
a linear fit (Chen et al., 2016; Lebel et al., 2008).

A main limitation of any study characterizing developmental trajec-
tories is that conclusions and interpretations highly depend on the
modelling technique and age range sampled. Lebel et al. (2019) recently
demonstrated that the curve fitting and estimated rate of developmental
changes differed depending on the age range used, particularly in fast
developing tracts (Lebel et al., 2019). In the present study, inclusion of
infants and exclusion of participants older than 18 years of age may result
in a selection bias that can influence the estimated age-related trajec-
tories. While exponential growth curves provided the best fit according to
BIC and offers significant improvements over linear fits (Lebel et al.,
2008; Taki et al., 2013; Tamnes et al., 2010), this model may not be
appropriate over a different or expanded age range. Inclusion of infants
provides the ability to capture the rapid early increases inmicrostructural
parameters that will influence the curve fitting and estimated growth rate
(Hermoye et al., 2006; McGraw et al., 2002; Oishi et al., 2013).
Furthermore, it is possible that the asymptote has not been achieved by
18 years of age in some tracts, which would result in an underestimation
of the age at the developmental plateau. In fact, lifespan studies of white
matter development show myelination continues well into adulthood
(Hasan et al., 2010; Lebel et al., 2012; Sowell et al., 2003; Westlye et al.,
2010) and diffusion studies demonstrate prolonged maturation of white
matter FA (Chen et al., 2016; Lebel et al., 2008). Therefore, interpreta-
tion of results and comparison with other developmental studies should
be done with caution.

Another limitation of the present study was the cross-sectional nature
of the design. Cross-sectional studies can capture relationships between
microstructural parameters and age, however they are heavily influenced
by inter-subject variability. Future longitudinal studies of white matter
maturation using NODDImodels and along-tract analyses can provide the
added benefit of providing information about microstructural changes
within subjects to more accurately define white matter developmental
trajectories.

The biophysical interpretation of NODDI parameters should be
considered with caution because, like all models, certain assumptions are
made that may oversimplify tissue microstructure. The minimal model
employed by NODDI makes it applicable to a wide variety of clinical and
research studies, but these simplifications can also result in biases and
uncertainties in parameter estimation (Jelescu et al., 2016). For example,
NODDI fixes intra- and extra-axonal diffusivities to a priori values. This
may bias the results because some biological variability is expected that
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may change across developmental stages (Jelescu et al., 2014; Kunz et al.,
2014). A recent study demonstrated that the default intrinsic parallel
diffusivity used in the NODDI model is not optimal in infants as young as
1 month old. In order to overcome this limitation, we only included in-
fants older than 7 months of age (Guerrero et al., 2019). We conducted a
similar post-hoc analysis in our data and found the default intrinsic
parallel diffusivity to be optimal in deep white matter in infants and
toddlers older than 1 year of age. For infants between 6 months and 1
year of age, however, we found that the optimal intrinsic parallel diffu-
sivity varies across different tracts, and the default value was within the
range of optimal values. Previous studies have demonstrated that
intrinsic parallel diffusivities vary across the brain in normative adult
populations (Kaden et al., 2016). Therefore, this problem is not unique to
infant populations. While it is tempting to consider the intrinsic parallel
diffusivity as a free parameter to be estimated from the diffusion signal
itself, this can lead to unstable estimates of other parameters (Jelescu
et al., 2016). Future studies should further explore the influence of
regional variation of microscopic diffusivity properties in the brain in
order to better assess the validity of multi-compartment models such as
NODDI. Another limitation related to data modeling is the nature of the
CMIND diffusion MRI data, which had slightly different scanning
sequence parameters between shells. We used a normalization procedure
similar to previous reports(Genc et al., 2018, 2017; Claire E Kelly et al.,
2016; Owen et al., 2014), which can possibly account for intensity dif-
ferences, assuming there are only negligible differences in T1 and T2
relaxation among tissue compartments. Nevertheless, care should be
taken when directly comparing specific parameter estimates obtained
using other sequences, as there may be subtle biases that remain after
normalization.

In conclusion, this study used NODDI parameters sensitized to
microstructural features to investigate the magnitude and timing of
maturational changes in major white matter tracts from infancy through
adolescence. Along-tract analyses provide a framework to uncover spatial
distributions of microstructural age effects within white matter tracts,
and our results indeed demonstrate regional patterns of NDI timing
within and across tracts. Additionally, ODI did not show significant as-
sociations with age, suggesting that white matter development over this
time period is attributed to increases in neurite density, likely through
increased axonal packing and myelination. Overall, our results demon-
strate the utility of NODDI models for characterizing the heterochronous
developmental patterns of white matter microstructure. These results add
to the growing body of research aiming to characterize how changes in
brain structure contribute to complex cognitive function, as these efforts
are necessary for ultimately understanding the origins of developmental
disability.
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